
MantisBT 2.0

Developers Guide

Reference for developers and community members

MantisBT Development Team

Developers Guide

MantisBT 2.0 Developers Guide
Reference for developers and community members

Author MantisBT Development Team mantisbt-dev@lists.sourceforge.net

Copyright © 2016 MantisBT team. This material may only be distributed subject to the terms and con-
ditions set forth in the GNU Free Documentation License (GFDL), V1.2 or later (the latest version is
presently available at http://www.gnu.org/licenses/fdl.txt).

This book is targeted at MantisBT developers, contributors and plugin authors. It documents the devel-
opment process and provides reference information regarding the MantisBT core, including the data-
base schema as well as the plugin system including an events reference.

mailto:mantisbt-dev@lists.sourceforge.net
http://www.gnu.org/licenses/fdl.txt

iii

1. Contributing to MantisBT 1
1.1. Initial Setup .. 1
1.2. Cloning the Repository .. 1

1.2.1. Determining the Clone URL .. 1
1.2.2. Initializing the Clone ... 2
1.2.3. Adding remotes .. 2
1.2.4. Checking out branches ... 3

1.3. Maintaining Tracking Branches .. 4
1.4. Preparing Feature Branches .. 5

1.4.1. Private Branches .. 5
1.4.2. Public Branches ... 6

1.5. Running PHPUnit tests ... 6
1.5.1. Running the SOAP tests .. 7

1.6. Submitting Changes .. 7
1.6.1. Before you submit .. 7
1.6.2. Submission Via Github Pull Requests ... 7
1.6.3. Submission Via Formatted Patches ... 8
1.6.4. Submission Via Public Repository ... 9

2. Database Schema Management 11
2.1. The MantisBT schema .. 11
2.2. Schema Definition ... 11
2.3. Installation / Upgrade Process ... 11

3. Event System 13
3.1. General Concepts ... 13
3.2. API Usage .. 13
3.3. Event Types ... 14

4. Plugin System 17
4.1. General Concepts ... 17
4.2. Building a Plugin ... 17

4.2.1. Plugin Structure ... 17
4.2.2. Properties .. 18
4.2.3. Pages and Files ... 20
4.2.4. Events ... 21
4.2.5. Configuration .. 23
4.2.6. Language and Localization ... 24

4.3. Example Plugin Source Listing .. 25
4.3.1. Example/Example.php .. 26
4.3.2. Example/files/foo.css .. 26
4.3.3. Example/lang/strings_english.txt .. 26
4.3.4. Example/page/config_page.php ... 27
4.3.5. Example/pages/config_update.php .. 27
4.3.6. Example/page/foo.php .. 28

4.4. API Usage .. 28

5. Events Reference 29
5.1. Introduction ... 29
5.2. System Events .. 29
5.3. Output Modifier Events .. 30

5.3.1. String Display ... 30
5.3.2. Menu Items .. 32
5.3.3. Page Layout .. 34

5.4. Bug Filter Events .. 35
5.4.1. Custom Filters and Columns ... 35

Developers Guide

iv

5.5. Bug and Bugnote Events ... 36
5.5.1. Bug View ... 36
5.5.2. Bug Actions ... 36
5.5.3. Bugnote View ... 39
5.5.4. Bugnote Actions ... 39

5.6. Notification Events .. 41
5.6.1. Recipient Selection ... 41

5.7. User Account Events ... 41
5.7.1. Account Preferences .. 41

5.8. Management Events ... 42
5.8.1. Projects and Versions .. 42

6. Integrating with MantisBT 47
6.1. Java integration .. 47

6.1.1. Prebuilt SOAP stubs using Axis .. 47
6.1.2. Usage in OSGi environments .. 47

6.2. Compatibility between releases .. 47
6.3. Support ... 47

7. Appendix 49
7.1. Git References .. 49

A. Revision History 51

Chapter 1.

1

Contributing to MantisBT
MantisBT source code is managed with Git1. If you are new to this version control system, you can find
some good resources for learning and installing it in Section 7.1, “Git References”.

1.1. Initial Setup
There are a few steps the MantisBT team requires of contributors and developers when accepting
code submissions. The user needs to configure Git to know their full name (not a screen name) and an
email address they can be contacted at (not a throwaway address).

To set up your name and email address with Git, run the following commands, substituting your own
real name and email address:

git config --global user.name "John Smith"
git config --global user.email "jsmith@mantisbt.org"

Optionally, you may want to configure Git to use terminal colors when displaying file diffs and other in-
formation, and also alias certain Git actions to shorter phrases to reduce typing:

git config --global color.diff "auto"
git config --global color.status "auto"
git config --global color.branch "auto"

git config --global alias.st "status"
git config --global alias.di "diff"
git config --global alias.co "checkout"
git config --global alias.ci "commit"

1.2. Cloning the Repository
The official MantisBT source code repository is hosted at GitHub2. This document assumes that you
have already signed up for and setup a GitHub account.

1.2.1. Determining the Clone URL
Which URL you will use to clone the repository before you start developing depends on your situation.

MantisBT Core Team Developers
MantisBT developers have push access to the official repository.

Benefitting from this access requires a special URL that uses your SSH key to handle access per-
missions: git@github.com:mantisbt/mantisbt.git. Alternatively, an HTTPS link can be used as well,
in which case you will have to provide your GitHub User ID and password when Git requests it:
https://github.com/mantisbt/mantisbt.git.

1 http://git-scm.com/
2 https://github.com/mantisbt/mantisbt

http://git-scm.com/
https://github.com/mantisbt/mantisbt
git@github.com:mantisbt/mantisbt.git
https://github.com/mantisbt/mantisbt.git
http://git-scm.com/
https://github.com/mantisbt/mantisbt

Chapter 1. Contributing to MantisBT

2

Note

Pushes will fail if you do not have access or your public SSH key is not set up correctly in
your GitHub profile.

Contributors
For other people, the MantisBT repository and the related clone URLs git://github.com/mantis-
bt/mantisbt.git (SSH) or https://github.com/mantisbt/mantisbt.git (HTTPS) will always be read-only.

It is therefore strongly advised to create your own fork 3 of MantisBT where you will be able
to push your changes, and then use the fork's URL instead to clone, which will look like this:
git@github.com:MyGithubId/mantisbt.git or https://github.com/MyGithubId/mantisbt.git

1.2.2. Initializing the Clone
To clone the repository, execute the following command from your target workspace:

git clone YourCloneURL

After performing the cloning operation, you should end up with a new directory in your workspace,
mantisbt/, containing the MantisBT repository with a remote named origin pointing to your Clone
URL.

MantisBT uses Git submodules4 to store and manage some third-party libraries. These require addi-
tional steps to initialize properly:

cd mantisbt
git submodule update --init

Warning

Failure to execute the submodule initialization commands will result in the corresponding directo-
ries under /library being empty, which will then cause errors when running MantisBT.

1.2.3. Adding remotes
If you are planning to use your own fork to push and maintain your changes, then we recommend set-
ting up an upstream remote for MantisBT's official repository, which will make it easier to keep your
repository up-to-date.

3 https://github.com/mantisbt/mantisbt/fork
4 http://git-scm.com/book/en/Git-Tools-Submodules

git://github.com/mantisbt/mantisbt.git
git://github.com/mantisbt/mantisbt.git
https://github.com/mantisbt/mantisbt.git
https://github.com/mantisbt/mantisbt/fork
git@github.com:MyGithubId/mantisbt.git
https://github.com/MyGithubId/mantisbt.git
http://git-scm.com/book/en/Git-Tools-Submodules
https://github.com/mantisbt/mantisbt/fork
http://git-scm.com/book/en/Git-Tools-Submodules

Checking out branches

3

git remote add --tags upstream git://github.com/mantisbt/mantisbt.git

1.2.4. Checking out branches
By default, the new clone will only track code from the primary remote branch, master, which is the
latest development version of MantisBT. If you are planning to work with stable release or other devel-
opment branches, you will need to set up local tracking branches in your repository.

The following command will set up a tracking branch for the current stable branch, master-1.3.x.

git checkout -b master-1.3.x origin/master-1.3.x

Chapter 1. Contributing to MantisBT

4

Note

With the introduction of submodules for some of the third-party libraries, you may encounter is-
sues when switching to an older branch which still has code from those libraries in a subdirectory
of /library rather than a submodule:

$ git checkout old_branch
error: The following untracked working tree files would be overwritten by checkout
 (list of files)
Aborting

To resolve this, you first have to get rid of the submodules directories before you can checkout
the branch. The command below will move all submodules to /tmp:

sed -rn "s/^.*path\s*=\s*(.*)$/\1/p" .gitmodules |xargs -I{} mv -v {} /tmp
git checkout old_branch

Alernatively, if you don't care about keeping the changes in the submodules directories, you can
simply execute

git checkout -f old_branch
git clean -df

When switching back from the older branch, the submodules directories will be empty. At that
point you can either
• Update the submodules to reclone them

git submodule update

• Restore the directories previously moved to /tmp back into the empty directories, e.g.

sed -rn "s/^.*path\s*=\s*(.*)$/\1/p" .gitmodules |xargs -n 1 basename |xargs -I{} mv -
v /tmp/{} library

For further reference: Pro Git book 5

1.3. Maintaining Tracking Branches
In order to keep your local repository up-to-date with the official one, there are a few simple com-
mands needed for any tracking branches that you may have, including master and master-1.3.x.

First, you'll need to get the latest information from the remote repository:

5 http://git-scm.com/book/en/Git-Tools-Submodules#Issues-with-Submodules

http://git-scm.com/book/en/Git-Tools-Submodules#Issues-with-Submodules
http://git-scm.com/book/en/Git-Tools-Submodules#Issues-with-Submodules

Preparing Feature Branches

5

git fetch origin

Note

If you cloned from your personal GitHub fork instead of the official MantisBT repository as ex-
plained in Section 1.2.3, “Adding remotes”, then you should instead execute:

git fetch upstream

Then for each tracking branch you have, enter the following commands:

git checkout BranchName
git rebase

Alternatively, you may combine the fetch and rebase operations described above into a single pull
command (for each remote tracking branch):

git checkout master
git pull --rebase

1.4. Preparing Feature Branches
For each local or shared feature branch that you are working on, you will need to keep it up to date
with the appropriate master branch. There are multiple methods for doing this, each better suited to a
different type of feature branch. Both methods assume that you have already performed the previous
step, to update your local tracking branches (see Section 1.3, “Maintaining Tracking Branches”).

1.4.1. Private Branches
If the topic branch in question is a local, private branch, that you are not sharing with other developers,
the simplest and easiest method to stay up to date with master is to use the rebase command. This
will append all of your feature branch commits into a linear history after the last commit on the master
branch.

git rebase master feature

Chapter 1. Contributing to MantisBT

6

Note

Rebasing changes the ID for each commit in your feature branch, which will cause trouble for
anyone sharing and/or following your branch.

The resulting conflict can be fixed by rebasing their copy of your branch onto your branch:

git checkout feature
git fetch remote/feature
git rebase remote/feature

1.4.2. Public Branches
For any publicly-shared branches, where other users may be watching your feature branches, or
cloning them locally for development work, you'll need to take a different approach to keeping it up to
date with master.

To bring public branch up to date, you'll need to merge the current master branch, which will create
a special "merge commit" in the branch history, causing a logical "split" in commit history where your
branch started and joining at the merge. These merge commits are generally disliked, because they
can crowd commit history, and because the history is no longer linear. They will be dealt with during
the submission process (see Section 1.5, “Running PHPUnit tests”).

git checkout feature
git merge master

At this point, you can push the branch to your public repository, and anyone following the branch can
then pull the changes directly into their local branch, either with another merge, or with a rebase, as
necessitated by the public or private status of their own changes.

1.5. Running PHPUnit tests
MantisBT has a suite of PHPUnit tests found in the tests directory. You are encouraged to add your
own tests for the patches you are submitting, but please remember that your changes must not break
existing tests.

In order to run the tests, you will need to have the PHP Soap extension, PHPUnit 3.4 or newer6

and Phing 2.4 or newer7 installed. The tests are configured using a bootstrap.php file. The
boostrap.php.sample file contains the settings you will need to adjust to run all the tests.

Running the unit tests is done from root directory using the following command:

phing test

6 http://www.phpunit.de
7 http://phing.info

http://www.phpunit.de
http://phing.info
http://www.phpunit.de
http://phing.info

Running the SOAP tests

7

1.5.1. Running the SOAP tests
MantisBT ships with a suite of SOAP tests which require an initial set up to be executed. The required
steps are:

• Install MantisBT locally and configure a project and a category.

• Adjust the bootstrap.php file to point to your local installation.

• Customize the config_inc.php to enable all the features tested using the SOAP tests. The sim-
plest way to do that is to run all the tests once and adjust it based on the skipped tests.

1.6. Submitting Changes
This section describes what you should do to submit a set of changes to MantisBT, allowing the
project developers to review and test, your code, and ultimately commit it to the MantisBT repository.

The actual submission can be done using several methods, described later in this section:
• Recommended: Github Pull Requests (see Section 1.6.2, “Submission Via Github Pull Requests”)

• Other public Git repository Pull Requests (see Section 1.6.4, “Submission Via Public Repository”)

• Git Formatted patches (see Section 1.6.3, “Submission Via Formatted Patches”)

1.6.1. Before you submit
Before submitting your contribution, you should make sure that
1. Your code follows the MantisBT coding guidelines 8

2. You have tested your changes locally (see Section 1.5, “Running PHPUnit tests”)

3. Your local branch has been rebased on top of the current Master branch, as described in Sec-
tion 1.4.1, “Private Branches”.

1.6.2. Submission Via Github Pull Requests
Since the official MantisBT repository9 is hosted there, using GitHub10 is the recommended (and easi-
est) way to submit your contributions.

With this method, you can keep your changesets up-to-date with the official development repository,
and likewise let anyone stay up to date with your repository, without needing to constantly upload and
download new formatted patches whenever you change anything.

The process below describes a simple workflow that can help you make your submission if you are not
familiar with Git; note that it is by no means the only way to do this.

8 http://www.mantisbt.org/wiki/doku.php/mantisbt:coding_guidelines
9 https://github.com/mantisbt/mantisbt
10 http://github.com

http://www.mantisbt.org/wiki/doku.php/mantisbt:coding_guidelines
https://github.com/mantisbt/mantisbt
http://github.com
http://www.mantisbt.org/wiki/doku.php/mantisbt:coding_guidelines
https://github.com/mantisbt/mantisbt
http://github.com

Chapter 1. Contributing to MantisBT

8

Note

We'll assume that you have already forked MantisBT11, cloned it locally as described in Sec-
tion 1.2, “Cloning the Repository” (remote upstream being the official MantisBT repository and ori-
gin your personal fork), and created a new feature branch (see Section 1.4, “Preparing Feature
Branches”) for your contribution, which we'll call MyBranch.

1. Make sure that the MyBranch feature branch is up-to-date with the master branch by rebasing it,
resolving any conflicts if necessary.

git fetch upstream
git rebase upstream/master MyBranch

2. Push the branch to your Github fork

git push origin MyBranch

3. Go to your Fork on Github (https://github.com/MyGithubId/mantisbt)

4. Initiate a Pull Request12 from your feature branch, following the guidelines provided in Github
Help13.

Please make sure you provide a detailed description of the changes you are submitting, includ-
ing the reason for it and if possible a reference (link) to an existing issue on our bugtracker14. The
team will usually review your changes and provide feedback within 7 days (but your mileage may
vary).

1.6.3. Submission Via Formatted Patches
Formatted patches are very similar to file diffs generated by other tools or source control systems,
but contain far more information, including your name and email address, and for every commit in the
set, the commit's timestamp, message, author, and more. They allow anyone to import the enclosed
changesets directly into Git, where all of the commit information is preserved.

Assuming that you have an existing local that you've kept up to date with master as described in Sec-
tion 1.4, “Preparing Feature Branches” currently checked out, generating a formatted patch set should
be relatively straightforward, using an appropriate filename as the target of the patch set:

git format-patch --binary --stdout origin/master..HEAD > feature_branch.patch

Once you've generated the formatted patch file, you can easily attach it to a bug report, or even use
the patch file as an email to send to the developer mailing list. Developers, or other users, can then

11 https://github.com/mantisbt/mantisbt/fork
12 https://github.com/MyGithubId/mantisbt/compare/MyBranch
13 https://help.github.com/articles/using-pull-requests
14 http://mantibt.org/bugs/

https://github.com/mantisbt/mantisbt/fork
https://github.com/MyGithubId/mantisbt
https://github.com/MyGithubId/mantisbt/compare/MyBranch
https://help.github.com/articles/using-pull-requests
https://help.github.com/articles/using-pull-requests
http://mantibt.org/bugs/
https://github.com/mantisbt/mantisbt/fork
https://github.com/MyGithubId/mantisbt/compare/MyBranch
https://help.github.com/articles/using-pull-requests
http://mantibt.org/bugs/

Submission Via Public Repository

9

import this patch set into their local repositories using the following command, again substituting the
appropriate filename:

git am --signoff feature_branch.patch

1.6.4. Submission Via Public Repository
If you are not able or not willing to make use of a fork of the official GitHub15 repository but have an-
other publicly available one to host your changes, for example on a free hosting for public repository
such as
• Bitbucket16

• Gitorious17

you can still use it to submit a patch in a similar fashion to the Github method described above, al-
though the process is slightly more complicated.

We'll assume you've already set up a publicly accessible repository at URL
git@githosting.com:contrib.git, kept it up-to-date with MantisBT's official repository, and that
you have pushed your feature branch MyBranch to it.

1. Generate the Pull Request

This will list information about your changes and how to access them. The process will attempt to
verify that you've pushed the correct data to the public repository, and will generate a summary of
changes.

git request-pull origin/master git@githosting.com:contrib.git MyBranch

2. Paste the output of the above command into a bug report or an email to the developer mailing
list18

Once your pull request has been posted, developers and other users can add your public repository
as a remote, and track your feature branch in their own working repository using the following com-
mands, replacing the remote name and local branch name as appropriate:

git remote add feature git@githosting.com:contrib.git
git checkout -b MyBranch feature/MyBranch

If the feature is approved for entry into MantisBT core, then the branch should first be rebased onto
the latest HEAD so that Git can remove any unnecessary merge commits, and create a linear history.
Once that's completed, the feature branch can be merged into master:

git rebase master feature
git checkout master

15 http://github.com
16 https://bitbucket.org
17 http://gitorious.com
18 mailto:mantisbt-dev@lists.sourceforge.net

http://github.com
https://bitbucket.org
http://gitorious.com
mailto:mantisbt-dev@lists.sourceforge.net
mailto:mantisbt-dev@lists.sourceforge.net
http://github.com
https://bitbucket.org
http://gitorious.com
mailto:mantisbt-dev@lists.sourceforge.net

Chapter 1. Contributing to MantisBT

10

git merge --no-ff feature

Chapter 2.

11

Database Schema Management

2.1. The MantisBT schema
The MantisBT database schema (excluding plugins) is described in the Entity-Relationship diagram
(ERD) below. There is also a PDF version available for download1.

2

Figure 2.1. MantisBT Entity-Relationship Diagram

2.2. Schema Definition
TODO: Discuss the ADODB datadict formats and the format MantisBT expects for schema definitions.

2.3. Installation / Upgrade Process
TODO: Discuss how MantisBT handles a database installation / upgrade, including the use of the con-
fig system and schema definitions.

1 http://mantisbt.org/docs/erd/
2 images/erd.png

http://mantisbt.org/docs/erd/
images/erd.png
http://mantisbt.org/docs/erd/
images/erd.png

12

Chapter 3.

13

Event System

3.1. General Concepts
The event system in MantisBT uses the concept of signals and hooked events to drive dynamic ac-
tions. Functions, or plugin methods, can be hooked during runtime to various defined events, which
can be signalled at any point to initiate execution of hooked functions.

Events are defined at runtime by name and event type (covered in the next section). Depending on
the event type, signal parameters and return values from hooked functions will be handled in different
ways to make certain types of common communication simplified.

3.2. API Usage
This is a general overview of the event API. For more detailed analysis, you may reference the file
core/event_api.php in the codebase.

Declaring Events

When declaring events, the only information needed is the event name and event
type. Events can be declared alone using the form:

event_declare($name, $type=EVENT_TYPE_DEFAULT);

or they can be declared in groups using key/value pairs of name => type relations,
stored in a single array, such as:

$events = array(
 $name_1 => $type_1,
 $name_2 => $type_2,
 ...
);

event_declare_many($events);

Hooking Events

Hooking events requires knowing the name of an already-declared event, and the
name of the callback function (and possibly associated plugin) that will be hooked to
the event. If hooking only a function, it must be declared in the global namespace.

event_hook($event_name, $callback, [$plugin]);

In order to hook many functions at once, using key/value pairs of name => callback
relations, in a single array:

$events = array(
 $event_1 => $callback_1,
 $event_2 => $callback_2,
 ...
);

event_hook($events, [$plugin]);

Chapter 3. Event System

14

Signalling Events

When signalling events, the event type of the target event must be kept in mind when
handling event parameters and return values. The general format for signalling an
event uses the following structure:

$value = event_signal($event_name, [array($param, ...),
 [array($static_param, ...)]]);

Each type of event (and individual events themselves) will use different combinations
of parameters and return values, so perusing Chapter 5, Events Reference is recom-
mended for determining the unique needs of each event when signalling and hooking
them.

3.3. Event Types
There are five standard event types currently defined in MantisBT. Each type is a generalization of a
certain "class" of solution to the problems that the event system is designed to solve. Each type al-
lows for simplifying a different set of communication needs between event signals and hooked call-
back functions.

Each type of event (and individual events themselves) will use different combinations of parameters
and return values, so perusing Chapter 5, Events Reference is recommended for determining the
unique needs of each event when signalling and hooking them.

EVENT_TYPE_EXECUTE

This is the simplest event type, meant for initiating basic hook execution without need-
ing to communicate more than a set of immutable parameters to the event, and ex-
pecting no return of data.

These events only use the first parameter array, and return values from hooked func-
tions are ignored. Example usage:

event_signal($event_name, [array($param, ...)]);

EVENT_TYPE_OUTPUT

This event type allows for simple output and execution from hooked events. A single
set of immutable parameters are sent to each callback, and the return value is inlined
as output. This event is generally used for an event with a specific purpose of adding
content or markup to the page.

These events only use the first parameter array, and return values from hooked func-
tions are immediately sent to the output buffer via 'echo'. Another parameter $format
can be used to model how the results are printed. This parameter can be either:
• null, or ommited: The returned values are printed without further processing

• <String>: A string to be used as separator for printed values

• <Array>: An array of (prefix, separator, postfix) to be used for the printed values

Example usage:

event_signal($event_name, [array($param, ...)], [$format]);

Event Types

15

EVENT_TYPE_CHAIN

This event type is designed to allow plugins to successively alter the parameters given
to them, such that the end result returned to the caller is a mutated version of the orig-
inal parameters. This is very useful for such things as output markup parsers.

The first set of parameters to the event are sent to the first hooked callback, which is
then expected to alter the parameters and return the new values, which are then sent
to the next callback to modify, and this continues for all callbacks. The return value
from the last callback is then returned to the event signaller.

This type allows events to optionally make use of the second parameter set, which are
sent to every callback in the series, but should not be returned by each callback. This
allows the signalling function to send extra, immutable information to every callback in
the chain. Example usage:

$value = event_signal($event_name, $param, [array($static_param, ...)]);

EVENT_TYPE_FIRST

The design of this event type allows for multiple hooked callbacks to 'compete' for the
event signal, based on priority and execution order. The first callback that can satisfy
the needs of the signal is the last callback executed for the event, and its return value
is the only one sent to the event caller. This is very useful for topics like user authenti-
cation.

These events only use the first parameter array, and the first non-null return value
from a hook function is returned to the caller. Subsequent callbacks are never execut-
ed. Example usage:

$value = event_signal($event_name, [array($param, ...)]);

EVENT_TYPE_DEFAULT

This is the fallback event type, in which the return values from all hooked callbacks
are stored in a special array structure. This allows the event caller to gather data sep-
arately from all events.

These events only use the first parameter array, and return values from hooked func-
tions are returned in a multi-dimensional array keyed by plugin name and hooked
function name. Example usage:

$values = event_signal($event_name, [array($param, ...)]);

16

Chapter 4.

17

Plugin System

4.1. General Concepts
The plugin system for MantisBT is designed as a lightweight extension to the standard MantisBT API,
allowing for simple and flexible addition of new features and customization of core operations. It takes
advantage of the new Event System (see Chapter 3, Event System) to offer developers rapid creation
and testing of extensions, without the need to modify core files.

Plugins are defined as implementations, or subclasses, of the MantisPlugin class as defined in
core/classes/MantisPlugin.php. Each plugin may define information about itself, as well as a
list of conflicts and dependencies upon other plugins. There are many methods defined in the Man-
tisPlugin class that may be used as convenient places to define extra behaviors, such as config-
uration options, event declarations, event hooks, errors, and database schemas. Outside a plugin's
core class, there is a standard method of handling language strings, content pages, and files.

At page load, the core MantisBT API will find and process any conforming plugins. Plugins will be
checked for minimal information, such as its name, version, and dependencies. Plugins that meet re-
quirements will then be initialized. At this point, MantisBT will interact with the plugins when appropri-
ate.

The plugin system includes a special set of API functions that provide convenience wrappers around
the more useful MantisBT API calls, including configuration, language strings, and link generation.
This API allows plugins to use core API's in "sandboxed" fashions to aid interoperation with other plug-
ins, and simplification of common functionality.

4.2. Building a Plugin
This section will act as a walk through of how to build a plugin, from the bare basics all the way up to
advanced topics. A general understanding of the concepts covered in the last section is assumed, as
well as knowledge of how the event system works. Later topics in this section will require knowledge of
database schemas and how they are used with MantisBT.

This walk through will be working towards building a single end result: the "Example" plugin as listed in
Section 4.3, “Example Plugin Source Listing”. You may refer to the final source code along the way, al-
though every part of it will be built up in steps throughout this section.

4.2.1. Plugin Structure
This section will introduce the general concepts of plugin structure, and how to get a barebones plugin
working with MantisBT. Not much will be mentioned yet on the topic of adding functionality to plugins,
just how to get the development process rolling.

The backbone of every plugin is what MantisBT calls the basename, a succinct, and most important-
ly, unique name that identifies the plugin. It may not contain any spacing or special characters beyond
the ASCII upper- and lowercase alphabet, numerals, and underscore. This is used to identify the plug-
in everywhere except for what the end-user sees. For our "Example" plugin, the basename we will use
should be obvious enough: Example.

Every plugin must be contained in a single directory, named to match the plugin's basename, as well
as contain at least a single PHP file, also named to match the basename, as such:

Note that for plugins that require a database schema to operate, the basename is also used to build
the table names, using the MantisBT table prefixes and suffix (please refer to the Admin Guide's Con-

Chapter 4. Plugin System

18

figuration section for further information). If our Example plugin were to create a table named 'foo', as-
suming default values for prefixes and suffix in MantisBT configuration, the physical table name would
be mantis_plugin_Example_foo_table.

Example/
 Example.php

Warning

Depending on case sensitivity of the underlying file system, these names must exactly match the
plugin's base name, i.e. example will not work.

This top-level PHP file must then contain a concrete class deriving from the MantisPlugin class,
which must be named in the form of %Basename%Plugin, which for our purpose becomes Example-
Plugin.

Because of how MantisPlugin declares the register() method as abstract, our plugin must
implement that method before PHP will find it semantically valid. This method is meant for one simple
purpose, and should never be used for any other task: setting the plugin's information properties in-
cluding the plugin's name, description, version, and more. Please refer to Section 4.2.2, “Properties”
below for details about available properties.

Once your plugin defines its class, implements the register() method, and sets at least the name
and version properties, it is then considered a "complete" plugin, and can be loaded and installed with-
in MantisBT's plugin manager. At this stage, our Example plugin, with all the possible plugin properties
set at registration, looks like this:

Example/Example.php

<?php
class ExamplePlugin extends MantisPlugin {
 function register() {
 $this->name = 'Example'; # Proper name of plugin
 $this->description = ''; # Short description of the plugin
 $this->page = ''; # Default plugin page

 $this->version = '1.0'; # Plugin version string
 $this->requires = array(# Plugin dependencies
 'MantisCore' => '2.0', # Should always depend on an appropriate
 # version of MantisBT
);

 $this->author = ''; # Author/team name
 $this->contact = ''; # Author/team e-mail address
 $this->url = ''; # Support webpage
 }
}

This alone will allow the Example plugin to be installed with MantisBT, and is the foundation of any
plugin. More of the plugin development process will be continued in the next sections.

4.2.2. Properties
This section describes the properties that can be defined when registering the plugin.

Properties

19

name
Your plugin's full name. Required value.

description
A full description of your plugin.

page
The name of a plugin page for further information and administration of the plugin. This is used to
create a link to the specified page on Mantis' manage plugin page.

version
Your plugin's version string. Required value. We recommend following the Semantic Version-
ing1 specification, but you are free to use any versioning scheme that can be handled by PHP's
version_compare() 2 function.

requires
An array of key/value pairs of basename/version plugin dependencies.

Note

The special, reserved basename MantisCore can be used to specify the minimum require-
ment for MantisBT core.

The version string can be defined as:

• Minimum requirement: the plugin specified by the given basename must be installed, and its
version must be equal or higher than the indicated one.

• Maximum requirement: prefixing a version number with '<' will allow the plugin to specify the
highest version (non-inclusive) up to which the required dependency is supported.

Note

If the plugin's minimum dependency for MantisCore is unspecified or lower than the current
release (i.e. it does not specifically list the current core version as supported) and the plu-
gin does not define a maximum dependency, a default one will be set to the next major re-
lease of MantisBT. (i.e. for 2.x.y we would add '<2').

This effectively disables plugins which have not been specifically designed for a new major
Mantis release, thus forcing authors to review their code, adapt it if necessary, and release
a new version of the plugin with updated dependencies.

• Both minimum and maximum: the two version numbers must be separated by a comma.

1 http://semver.org/
2 http://php.net/manual/en/function.version-compare.php

http://semver.org/
http://semver.org/
http://php.net/manual/en/function.version-compare.php
http://php.net/manual/en/function.version-compare.php
http://semver.org/
http://php.net/manual/en/function.version-compare.php

Chapter 4. Plugin System

20

Here are a few examples to illustrate the above explanations, assuming that the current Mantis re-
lease (MantisCore version) is 2.1:
• Old release without a maximum version specified

$this->requires = array('MantisCore' => '1.3.1');

The plugin is compatible with MantisBT >= 1.3.1 and < 2.0.0 - note that the maximum version
(<2) was added by the system.

• Current release without a maximum version specified

$this->requires = array('MantisCore' => '2.0');

The plugin is compatible with MantisBT >= 2.0 and < 3.0 (the latter is implicit); code supporting
older releases (e.g. 1.3) must be maintained separately (i.e. in a different branch).

• Only specify a maximum version

$this->requires = array('MantisCore' => '< 3.1');

The plugin is compatible up to MantisBT 3.1 (not inclusive).

• Old release with a maximum version

$this->requires = array('MantisCore' => '1.3, < 4.0');

The plugin is compatible with MantisBT >= 1.3 and < 4.0.

uses
An array of key/value pairs of basename/version optional (soft) plugin dependencies. See re-
quires above for details on how to specify versions.

author
Your name, or an array of names.

contact
An email address where you can be contacted.

url
A web address for your plugin.

4.2.3. Pages and Files
The plugin API provides a standard hierarchy and process for adding new pages and files to your plu-
gin. For strict definitions, pages are PHP files that will be executed within the MantisBT core system,
while files are defined as a separate set of raw data that will be passed to the client's browser exactly
as it appears in the filesystem.

New pages for your plugin should be placed in your plugin's pages/ directory, and should be named
using only letters and numbers, and must have a ".php" file extension. To generate a URI to the new
page in MantisBT, the API function plugin_page() should be used. Our Example plugin will create

Events

21

a page named foo.php, which can then be accessed via plugin_page.php?page=Example/foo,
the same URI that plugin_page() would have generated:

Example/pages/foo.php

<?php
echo '<p>Here is a link to page foo.</p>';

Adding non-PHP files, such as images or CSS stylesheets, follows a very similar pattern as pages.
Files should be placed in the plugin's files/ directory, and can only contain a single period in the
name. The file's URI is generated with the plugin_file() function. For our Example plugin, we'll
create a basic CSS stylesheet, and modify the previously shown page to include the stylesheet:

Example/files/foo.css

p.foo {
 color: red;
}

Example/pages/foo.php

<?php
echo '<p>Here is a link to page foo.</p>';
echo '<link rel="stylesheet" type="text/css" href="', plugin_file('foo.css'), '"/>',
 '<p class="foo">This is red text.</p>';

Note that while plugin_page() expects only the page's name without the extension,
plugin_file() requires the entire filename so that it can distinguish between foo.css and a po-
tential file foo.png.

The plugin's filesystem structure at this point looks like this:

Example/
 Example.php
 pages/
 foo.php
 files/
 foo.css

4.2.4. Events
Plugins have an integrated method for both declaring and hooking events, without needing to directly
call the event API functions. These take the form of class methods on your plugin.

To declare a new event, or a set of events, that your plugin will trigger, override the events() method
of your plugin class, and return an associative array with event names as the key, and the event type
as the value. Let's add an event "foo" to our Example plugin that does not expect a return value (an
"execute" event type), and another event 'bar' that expects a single value that gets modified by each
hooked function (a "chain" event type):

Example/Example.php

<?php
class ExamplePlugin extends MantisPlugin {
 ...

Chapter 4. Plugin System

22

 function events() {
 return array(
 'EVENT_EXAMPLE_FOO' => EVENT_TYPE_EXECUTE,
 'EVENT_EXAMPLE_BAR' => EVENT_TYPE_CHAIN,
);
 }
}

When the Example plugin is loaded, the event system in MantisBT will add these two events to
its list of events, and will then allow other plugins or functions to hook them. Naming the events
"EVENT_PLUGINNAME_EVENTNAME" is not necessary, but is considered best practice to avoid
conflicts between plugins.

Hooking other events (or events from your own plugin) is almost identical to declaring them. Instead
of passing an event type as the value, your plugin must pass the name of a class method on your plu-
gin that will be called when the event is triggered. For our Example plugin, we'll create a foo() and
bar() method on our plugin class, and hook them to the events we declared earlier.

Example/Example.php

<?php
class ExamplePlugin extends MantisPlugin {
 ...

 function hooks() {
 return array(
 'EVENT_EXAMPLE_FOO' => 'foo',
 'EVENT_EXAMPLE_BAR' => 'bar',
);
 }

 function foo($p_event) {
 ...
 }

 function bar($p_event, $p_chained_param) {
 ...
 return $p_chained_param;
 }
}

Note that both hooked methods need to accept the $p_event parameter, as that contains the event
name triggering the method (for cases where you may want a method hooked to multiple events). The
bar() method also accepts and returns the chained parameter in order to match the expectations of
the "bar" event.

Now that we have our plugin's events declared and hooked, let's modify our earlier page so that trig-
gers the events, and add some real processing to the hooked methods:

Example/Example.php

<?php
class ExamplePlugin extends MantisPlugin {
 ...

 function foo($p_event) {
 echo 'In method foo(). ';
 }

 function bar($p_event, $p_chained_param) {
 return str_replace('foo', 'bar', $p_chained_param);
 }

Configuration

23

}

Example/pages/foo.php

<?php
echo '<p>Here is a link to page foo.</p>';
 '<link rel="stylesheet" type="text/css" href="', plugin_file('foo.css'), '"/>',
 '<p class="foo">';

event_signal('EVENT_EXAMPLE_FOO');

$t_string = 'A sentence with the word "foo" in it.';
$t_new_string = event_signal('EVENT_EXAMPLE_BAR', array($t_string));

echo $t_new_string, '</p>';

When the first event "foo" is signaled, the Example plugin's foo() method will execute and echo a
string. After that, the second event "bar" is signaled, and the page passes a string parameter; the
plugin's bar() gets the string and replaces any instance of "foo" with "bar", and returns the result-
ing string. If any other plugin had hooked the event, that plugin could have further modified the new
string from the Example plugin, or vice versa, depending on the loading order of plugins. The page
then echos the modified string that was returned from the event.

4.2.5. Configuration
Similar to events, plugins have a simplified method for declaring configuration options, as well as API
functions for retrieving or setting those values at runtime.

Declaring a new configuration option is achieved just like declaring events. By overriding the con-
fig() method on your plugin class, your plugin can return an associative array of configuration op-
tions, with the option name as the key, and the default option as the array value. Our Example plugin
will declare an option "foo_or_bar", with a default value of "foo":

Example/Example.php

<?php
class ExamplePlugin extends MantisPlugin {
 ...

 function config() {
 return array(
 'foo_or_bar' => 'foo',
);
 }
}

Retrieving the current value of a plugin's configuration option is achieved by using the plugin API's
plugin_config_get() function, and can be set to a modified value in the database using
plugin_config_set(). With these functions, the config option is prefixed with the plugin's name, in
attempt to automatically avoid conflicts in naming. Our Example plugin will demonstrate this by adding
a secure form to the "config_page", and handling the form on a separate page "config_update" that will
modify the value in the database, and redirect back to page "config_page", just like any other form and
action page in MantisBT:

Example/pages/config_page.php

<form action="<?php echo plugin_page('config_update') ?>" method="post">
<?php echo form_security_field('plugin_Example_config_update') ?>

Chapter 4. Plugin System

24

<label>Foo or Bar?
<input name="foo_or_bar" value="<?php echo
 string_attribute($t_foo_or_bar) ?>"/></label>

<label><input type="checkbox" name="reset"/> Reset</label>

<input type="submit"/>

</form>

Example/pages/config_update.php

<?php
form_security_validate('plugin_Example_config_update');

$f_foo_or_bar = gpc_get_string('foo_or_bar');
$f_reset = gpc_get_bool('reset', false);

if($f_reset) {
 plugin_config_delete('foo_or_bar');
} else {
 if($f_foo_or_bar == 'foo' || $f_foo_or_bar == 'bar') {
 plugin_config_set('foo_or_bar', $f_foo_or_bar);
 }
}

form_security_purge('plugin_Example_config_update');
print_successful_redirect(plugin_page('foo', true));

Note that the form_security_*() functions are part of the form API, and prevent CSRF attacks
against forms that make changes to the system.

4.2.6. Language and Localization
MantisBT has a very advanced set of localization tools, which allow all parts of of the application to be
localized to the user's preferred language. This feature has been extended for use by plugins as well,
so that a plugin can be localized in much the same method as used for the core system. Localizing a
plugin involves creating a language file for each localization available, and using a special API call to
retrieve the appropriate string for the user's language.

All language files for plugins follow the same format used in the core of MantisBT, should be placed in
the plugin's lang/ directory, and named the same as the core language files. Strings specific to the
plugin should be "namespaced" in a way that will minimize any risk of collision. Translating the plugin
to other languages already supported by MantisBT is then as simple as creating a new strings file with
the localized content; the MantisBT core will find and use the new language strings automatically.

We'll use the "configuration" pages from the previous examples, and dress them up with localized lan-
guage strings, and add a few more flourishes to make the page act like a standard MantisBT page.
First we need to create a language file for English, the default language of MantisBT and the default
fallback language in the case that some strings have not yet been localized to the user's language:

Example/lang/strings_english.txt

<?php

$s_plugin_Example_configuration = "Configuration";
$s_plugin_Example_foo_or_bar = "Foo or Bar?";
$s_plugin_Example_reset = "Reset Value";

Example/pages/config_page.php

Example Plugin Source Listing

25

<?php

layout_page_header(plugin_lang_get('configuration'));
layout_page_begin();
$t_foo_or_bar = plugin_config_get('foo_or_bar');

?>

<form action="<?php echo plugin_page('config_update') ?>" method="post">
<?php echo form_security_field('plugin_Example_config_update') ?>
<table class="width60">

<tr>
 <td class="form-title" rowspan="2"><?php echo plugin_lang_get('configuration') ?></td>
</tr>

<tr <?php echo helper_alternate_class() ?>>
 <td class="category"><php echo plugin_lang_get('foo_or_bar') ?></td>
 <td><input name="foo_or_bar" value="<?php echo string_attribute($t_foo_or_bar) ?>"/></
td>
</tr>

<tr <?php echo helper_alternate_class() ?>>
 <td class="category"><php echo plugin_lang_get('reset') ?></td>
 <td><input type="checkbox" name="reset"/></td>
</tr>

<tr>
 <td class="center" rowspan="2"><input type="submit"/></td>
</tr>

</table>
</form>

<?php

layout_page_end();

The two calls to layout_page_being() and layout_page_end() trigger the standard MantisBT
header and footer portions, respectively, which also displays things such as the menus and triggers
other layout-related events. layout_page_header() pulls in the CSS classes for alternating row
colors in the table. The rest of the HTML and CSS follows the "standard" MantisBT markup styles for
content and layout.

4.3. Example Plugin Source Listing
The code in this section, for the Example plugin, is available for use, modification, and redistribution
without any restrictions and without any warranty or implied warranties. You may use this code howev-
er you want.

Example/
 Example.php
 files/
 foo.css
 lang/
 strings_english.txt
 pages/
 config_page.php
 config_update.php
 foo.php

Chapter 4. Plugin System

26

4.3.1. Example/Example.php

Example/Example.php
<?php
class ExamplePlugin extends MantisPlugin {
 function register() {
 $this->name = 'Example'; # Proper name of plugin
 $this->description = ''; # Short description of the plugin
 $this->page = ''; # Default plugin page

 $this->version = '1.0'; # Plugin version string
 $this->requires = array(# Plugin dependencies
 'MantisCore' => '2.0', # Should always depend on an appropriate
 # version of MantisBT
);

 $this->author = ''; # Author/team name
 $this->contact = ''; # Author/team e-mail address
 $this->url = ''; # Support webpage
 }

 function events() {
 return array(
 'EVENT_EXAMPLE_FOO' => EVENT_TYPE_EXECUTE,
 'EVENT_EXAMPLE_BAR' => EVENT_TYPE_CHAIN,
);
 }

 function hooks() {
 return array(
 'EVENT_EXAMPLE_FOO' => 'foo',
 'EVENT_EXAMPLE_BAR' => 'bar',
);
 }

 function config() {
 return array(
 'foo_or_bar' => 'foo',
);
 }

 function foo($p_event) {
 echo 'In method foo(). ';
 }

 function bar($p_event, $p_chained_param) {
 return str_replace('foo', 'bar', $p_chained_param);
 }

}

4.3.2. Example/files/foo.css

Example/files/foo.css
p.foo {
 color: red;
}

4.3.3. Example/lang/strings_english.txt

Example/lang/strings_english.txt

Example/page/config_page.php

27

<?php

$s_plugin_Example_configuration = "Configuration";
$s_plugin_Example_foo_or_bar = "Foo or Bar?";
$s_plugin_Example_reset = "Reset Value";

4.3.4. Example/page/config_page.php

Example/pages/config_page.php
<?php

layout_page_header(plugin_lang_get('configuration'));
layout_page_begin();
$t_foo_or_bar = plugin_config_get('foo_or_bar');

?>

<form action="<?php echo plugin_page('config_update') ?>" method="post">
<?php echo form_security_field('plugin_Example_config_update') ?>
<table class="width60">

<tr>
 <td class="form-title" rowspan="2"><?php echo plugin_lang_get('configuration') ?></td>
</tr>

<tr <?php echo helper_alternate_class() ?>>
 <td class="category"><php echo plugin_lang_get('foo_or_bar') ?></td>
 <td><input name="foo_or_bar" value="<?php echo string_attribute($t_foo_or_bar) ?>"/></
td>
</tr>

<tr <?php echo helper_alternate_class() ?>>
 <td class="category"><php echo plugin_lang_get('reset') ?></td>
 <td><input type="checkbox" name="reset"/></td>
</tr>

<tr>
 <td class="center" rowspan="2"><input type="submit"/></td>
</tr>

</table>
</form>

<?php

layout_page_end();

4.3.5. Example/pages/config_update.php

Example/pages/config_update.php
<?php
form_security_validate('plugin_Example_config_update');

$f_foo_or_bar = gpc_get_string('foo_or_bar');
$f_reset = gpc_get_bool('reset', false);

if($f_reset) {
 plugin_config_delete('foo_or_bar');
} else {
 if($f_foo_or_bar == 'foo' || $f_foo_or_bar == 'bar') {

Chapter 4. Plugin System

28

 plugin_config_set('foo_or_bar', $f_foo_or_bar);
 }
}

form_security_purge('plugin_Example_config_update');
print_successful_redirect(plugin_page('foo', true));

4.3.6. Example/page/foo.php

Example/pages/foo.php
<?php
echo '<p>Here is a link to page foo.</p>';
 '<link rel="stylesheet" type="text/css" href="', plugin_file('foo.css'), '"/>',
 '<p class="foo">';

event_signal('EVENT_EXAMPLE_FOO');

$t_string = 'A sentence with the word "foo" in it.';
$t_new_string = event_signal('EVENT_EXAMPLE_BAR', array($t_string));

echo $t_new_string, '</p>';

4.4. API Usage
This is a general overview of the plugin API. For more detailed analysis, you may reference the file
core/plugin_api.php in the codebase.

Chapter 5.

29

Events Reference

5.1. Introduction
In this chapter, an attempt will be made to list all events used (or planned for later use) in the Man-
tisBT event system. Each listed event will include details for the event type, when the event is called,
and the expected parameters and return values for event callbacks.

Here we show an example event definition. For each event, the event identifier will be listed along with
the event types (see Section 3.3, “Event Types”) in parentheses. Below that should be a concise but
thorough description of how the event is called and how to use it. Following that should be a list of
event parameters (if any), as well as the expected return value (if any).

EVENT_EXAMPLE (Default)

This is an example event description.

Parameters
• <Type>: Description of parameter one

• <Type>: Description of parameter two

Return Value
• <Type>: Description of return value

5.2. System Events
These events are initiated by the plugin system itself to allow certain functionality to simplify plugin de-
velopment.

EVENT_PLUGIN_INIT (Execute)

This event is triggered by the MantisBT plugin system after all regis-
tered and enabled plugins have been initialized (their init() func-
tions have been called). This event should always be the first event
triggered for any page load. No parameters are passed to hooked
functions, and no return values are expected.

This event is the first point in page execution where all registered
plugins are guaranteed to be enabled (assuming dependencies and
such are met). At any point before this event, any or all plugins may
not yet be loaded. Note that the core system has not yet completed
the bootstrap process when this event is signalled.

Suggested uses for the event include:
• Checking for plugins that aren't require for normal usage.

• Interacting with other plugins outside the context of pages or
events.

EVENT_CORE_HEADERS (Execute)

This event is triggered by the MantisBT bootstrap process just before
emitting the headers. This enables plugins to emit their own headers
or use API that enables tweaking values of headers emitted by core.

Chapter 5. Events Reference

30

An example, of headers that can be tweaked is Content-Security-Poli-
cy header which can be tweaked using http_csp_*() APIs.

EVENT_CORE_READY (Execute)

This event is triggered by the MantisBT bootstrap process after all
core APIs have been initialized, including the plugin system, but be-
fore control is relinquished from the bootstrap process back to the
originating page. No parameters are passed to hooked functions, and
no return values are expected.

This event is the first point in page execution where the entire system
is considered loaded and ready.

EVENT_LOG (Execute)

This event is triggered by MantisBT to log a message. The contents
of the message should be hyper linked based on the following rules:
#123 means issue 123, ~123 means issue note 123, @P123 means
project 123, @U123 means user 123. Logging plugins can capture
extra context information like timestamp, current logged in user, etc.
This event receives the logging string as a parameter.

Parameters
• <String>: the logging string

5.3. Output Modifier Events

5.3.1. String Display
These events make it possible to dynamically modify output strings to interpret or add semantic mean-
ing or markup. Examples include the creation of links to other bugs or bugnotes, as well as handling
urls to other sites in general.

EVENT_DISPLAY_BUG_ID (Chained)

This is an event to format bug ID numbers before being displayed, us-
ing the bug_format_id() API call. The result should be plain-text,
as the resulting string is used in various formats and locations.

Parameters
• <String>: bug ID string to be displayed

• <Integer>: bug ID number

Return Value
• <String>: modified bug ID string

EVENT_DISPLAY_EMAIL (Chained)

This is an event to format text before being sent in an email. Call-
backs should be used to process text and convert it into a plain-
text-readable format so that users with textual email clients can best
utilize the information. Hyperlinks and other markup should be re-
moved, leaving the core content by itself.

String Display

31

Parameters
• <String>: input string to be displayed

Return Value
• <String>: modified input string

EVENT_DISPLAY_EMAIL_BUILD_SUBJECT (Chained)

This is an event to format the subject line of an email before it is sent.

Parameters
• <String>: input string for email subject

Return Value
• <String>: modified subject string

EVENT_DISPLAY_FORMATTED (Chained)

This is an event to display generic formatted text. The string to be dis-
played is passed between hooked callbacks, each taking a turn to
modify the output in some specific manner. Text passed to this may
be processed for all types of formatting and markup, including click-
able links, presentation adjustments, etc.

Parameters
• <String>: input string to be displayed

Return Value
• <String>: modified input string

• <Boolean>: multiline input string

EVENT_DISPLAY_RSS (Chained)

This is an event to format content before being displayed in an RSS
feed. Text should be processed to perform any necessary character
escaping to preserve hyperlinks and other appropriate markup.

Parameters
• <String>: input string to be displayed

• <Boolean>: multiline input string

Return Value
• <String>: modified input string

EVENT_DISPLAY_TEXT (Chained)

This is an event to display generic unformatted text. The string to be
displayed is passed between hooked callbacks, each taking a turn to
modify the output in some specific manner. Text passed to this event
should only be processed for the most basic formatting, such as pre-
serving line breaks and special characters.

Parameters
• <String>: input string to be displayed

• <Boolean>: multiline input string

Chapter 5. Events Reference

32

Return Value
• <String>: modified input string

5.3.2. Menu Items
These events allow new menu items to be inserted in order for new content to be added, such as new
pages or integration with other applications.

EVENT_MENU_ACCOUNT (Default)

This event gives plugins the opportunity to add new links to the user
account menu available to users from the 'My Account' link on the
main menu.

Return Value
• <Array>: List of HTML links for the user account menu.

EVENT_MENU_DOCS (Default)

This event gives plugins the opportunity to add new links to the docu-
ments menu available to users from the 'Docs' link on the main menu.

Return Value
• <Array>: List of HTML links for the documents menu.

EVENT_MENU_FILTER (Default)

This event gives plugins the opportunity to add new links to the issue
list menu available to users from the 'View Issues' link on the main
menu.

Return Value
• <Array>: List of HTML links for the issue list menu.

EVENT_MENU_ISSUE (Default)

This event gives plugins the opportunity to add new links to the issue
menu available to users when viewing issues.

Parameters
• <Integer>: bug ID

Return Value
• <Array>: List of HTML links for the documents menu.

EVENT_MENU_MAIN (Default)

This event gives plugins the opportunity to add new menu options to
the main menu. New links will be added AFTER the standard menu
options.

Return Value
• <Array>: Hooked events may return an array of menu options.

Each array entry will contain an associate array with keys 'title', 'url',
'access_level', and 'icon' (e.g. fa-pencil from Font Awesome1).

1 http://fontawesome.io/icons/

http://fontawesome.io/icons/
http://fontawesome.io/icons/

Menu Items

33

 return array(
 array(
 'title' => 'My Link',
 'access_level' => DEVELOPER,
 'url' => 'my_link.php',
 'icon' => 'fa-random'
),
 array(
 'title' => 'My Link2',
 'access_level' => DEVELOPER,
 'url' => 'my_link2.php',
 'icon' => 'fa-shield'
)
);

EVENT_MENU_MAIN_FRONT (Default)

This event gives plugins the opportunity to add new menu options to
main menu. New links will be added BEFORE the standard menu op-
tions.

Return Value
• <Array>: Hooked events may return an array of menu options.

Each array entry will contain an associate array with keys 'title', 'url',
'access_level', and 'icon' (e.g. fa-pencil from Font Awesome2).

 return array(
 array(
 'title' => 'My Link',
 'access_level' => DEVELOPER,
 'url' => 'my_link.php',
 'icon' => 'fa-random'
),
 array(
 'title' => 'My Link2',
 'access_level' => DEVELOPER,
 'url' => 'my_link2.php',
 'icon' => 'fa-shield'
)
);

EVENT_MENU_MANAGE (Default)

This event gives plugins the opportunity to add new links to the man-
agement menu available to site administrators from the 'Manage' link
on the main menu. Plugins should try to minimize use of these links to
functions dealing with core MantisBT management.

Return Value
• <Array>: List of HTML links for the management menu.

EVENT_MENU_MANAGE_CONFIG (Default)

2 http://fontawesome.io/icons/

http://fontawesome.io/icons/
http://fontawesome.io/icons/

Chapter 5. Events Reference

34

This event gives plugins the opportunity to add new links to the con-
figuration management menu available to site administrators from the
'Manage Configuration' link on the standard management menu. Plu-
gins should try to minimize use of these links to functions dealing with
core MantisBT configuration.

Return Value
• <Array>: List of HTML links for the manage configuration menu.

EVENT_MENU_SUMMARY (Default)

This event gives plugins the opportunity to add new links to the sum-
mary menu available to users from the 'Summary' link on the main
menu.

Return Value
• <Array>: List of HTML links for the summary menu.

5.3.3. Page Layout
These events offer the chance to create output at points relevant to the overall page layout of Mantis-
BT. Page headers, footers, stylesheets, and more can be created. Events listed below are in order of
runtime execution.

EVENT_LAYOUT_RESOURCES (Output)

This event allows plugins to output HTML code from inside the
<head> tag, for use with CSS, Javascript, RSS, or any other simi-
lar resources. Note that this event is signaled after all other CSS and
Javascript resources are linked by MantisBT.

Return Value
• <String>: HTML code to output.

EVENT_LAYOUT_BODY_BEGIN (Output)

This event allows plugins to output HTML code immediately after the
<body> tag is opened, so that MantisBT may be integrated within an-
other website's template, or other similar use.

Return Value
• <String>: HTML code to output.

EVENT_LAYOUT_PAGE_HEADER (Output)

This event allows plugins to output HTML code immediately after the
MantisBT header content, such as the logo image.

Return Value
• <String>: HTML code to output.

EVENT_LAYOUT_CONTENT_BEGIN (Output)

This event allows plugins to output HTML code after the top main
menu, but before any page-specific content begins.

Return Value
• <String>: HTML code to output.

Bug Filter Events

35

EVENT_LAYOUT_CONTENT_END (Output)

This event allows plugins to output HTML code after any page- spe-
cific content has completed, but before the bottom menu bar (or foot-
er).

Return Value
• <String>: HTML code to output.

EVENT_LAYOUT_PAGE_FOOTER (Output)

This event allows plugins to output HTML code after the MantisBT
version, copyright, and webmaster information, but before the query
information.

Return Value
• <String>: HTML code to output.

EVENT_LAYOUT_BODY_END (Output)

This event allows plugins to output HTML code immediately before
the </body> end tag, to so that MantisBT may be integrated within
another website's template, or other similar use.

Return Value
• <String>: HTML code to output.

EVENT_VIEW_BUG_ATTACHMENT (Output)

This event allows plugins to output HTML code immediately after the
line of an attachment. Receives the attachment data as a parameter,
in the form of an attachment array from within the array returned by
the file_get_visible_attachments() function.

Parameters
• <Array>: the attachment data as an array (see core/
file_api.php)

Return Value
• <String>: HTML code to output.

5.4. Bug Filter Events

5.4.1. Custom Filters and Columns

EVENT_FILTER_FIELDS (Default)

This event allows a plugin to register custom filter objects (based on
the MantisFilter class) that will allow the user to search for is-
sues based on custom criteria or datasets. The plugin can return ei-
ther a class name (which will be instantiated at runtime) or an already
instantiated object. The plugin must ensure that the filter class has
been defined before returning the class name for this event.

Return Value
• <Array>: Array of class names or objects for custom filters

Chapter 5. Events Reference

36

EVENT_FILTER_COLUMNS (Default)

This event allows a plugin to register custom column objects (based
on the MantisColumn class) that will allow the user to view data
for issues based on custom datasets. The plugin can return either a
class name (which will be instantiated at runtime) or an already in-
stantiated object. The plugin must ensure that the column class has
been defined before returning the class name for this event.

Return Value
• <Array>: Array of class names or objects for custom columns

5.5. Bug and Bugnote Events

5.5.1. Bug View

EVENT_VIEW_BUG_DETAILS (Execute)

This event allows a plugin to either process information or display
some data in the bug view page. It is triggered after the row contain-
ing the target version and product build fields, and before the bug
summary is displayed.

Any output here should be defining appropriate rows and columns for
the surrounding

<table>

elements.

Parameters
• <Integer>: Bug ID

EVENT_VIEW_BUG_EXTRA (Execute)

This event allows a plugin to either process information or display
some data in the bug view page. It is triggered after the bug notes
have been displayed, but before the history log is shown.

Any output here should be contained within its own

<table>

element.

Parameters
• <Integer>: Bug ID

5.5.2. Bug Actions

EVENT_REPORT_BUG_FORM (Execute)

Bug Actions

37

This event allows plugins to do processing or display form elements
on the Report Issue page. It is triggered immediately before the sum-
mary text field.

Any output here should be defining appropriate rows and columns for
the surrounding <table> elements.

Parameters
• <Integer>: Project ID

EVENT_REPORT_BUG_FORM_TOP (Execute)

This event allows plugins to do processing or display form elements
at the top of the Report Issue page. It is triggered before any of the
visible form elements have been created.

Any output here should be defining appropriate rows and columns for
the surrounding <table> elements.

Parameters
• <Integer>: Project ID

EVENT_REPORT_BUG_DATA (Chain)

This event allows plugins to perform pre-processing of the new bug
data structure after being reported from the user, but before the data
is saved to the database. At this point, the issue ID is not yet known,
as the data has not yet been persisted.

Parameters
• <Complex>: Bug data structure (see core/bug_api.php)

Return Value
• <Complex>: Bug data structure

EVENT_REPORT_BUG (Execute)

This event allows plugins to perform post-processing of the bug da-
ta structure after being reported from the user and being saved to the
database. At this point, the issue ID is actually known, and is passed
as a second parameter.

Parameters
• <Complex>: Bug data structure (see core/bug_api.php)

• <Integer>: Bug ID

EVENT_UPDATE_BUG_FORM (Execute)

This event allows plugins to do processing or display form elements
on the Update Issue page. It is triggered immediately before the sum-
mary text field.

Parameters
• <Integer>: Bug ID

EVENT_UPDATE_BUG_FORM_TOP (Execute)

Chapter 5. Events Reference

38

This event allows plugins to do processing or display form elements
on the Update Issue page. It is triggered immediately before before
any of the visible form elements have been created.

Parameters
• <Integer>: Bug ID

EVENT_UPDATE_BUG_STATUS_FORM (Execute)

This event allows plugins to do processing or display form elements
in the bug change status form. It is triggered immediately before the
add bugnote fields.

Any output here should be defining appropriate rows and columns for
the surrounding <table> elements.

Parameters
• <Integer>: Bug ID

• <Integer>: New Status

EVENT_UPDATE_BUG_DATA (Chain)

This event allows plugins to perform pre-processing of the updated
bug data structure after being modified by the user, but before being
saved to the database.

Parameters
• <Complex>: Updated bug data structure (see core/
bug_api.php)

• <Complex>: Original bug data structure (see core/bug_api.php)

Return Value
• <Complex>: Updated bug data structure (see core/
bug_api.php)

EVENT_UPDATE_BUG (Execute)

This event allows plugins to perform post-processing of the bug data
structure after being updated.

Parameters
• <Complex>: Original bug data structure (see core/bug_api.php)

• <Complex>: Updated bug data structure (see core/
bug_api.php)

EVENT_BUG_ACTION (Execute)

This event allows plugins to perform post-processing of group actions
performed from the View Issues page. The event will get called for
each bug ID that was part of the group action event.

Parameters
• <String>: Action title (see bug_actiongroup.php)

• <Integer>: Bug ID

Bugnote View

39

EVENT_BUG_DELETED (Execute)

This event allows plugins to perform pre-processing of bug deletion
actions. The actual deletion will occur after execution of the event, for
compatibility reasons.

Parameters
• <Integer>: Bug ID

5.5.3. Bugnote View

EVENT_VIEW_BUGNOTES_START (Execute)

This event allows a plugin to either process information or display
some data in the bug notes section, before any bug notes are dis-
played. It is triggered after the bug notes section title.

Any output here should be defining appropriate rows and columns for
the surrounding <table> elements.

Parameters
• <Integer>: Bug ID

• <Complex>: A list of all bugnotes to be displayed to the user

EVENT_VIEW_BUGNOTE (Execute)

This event allows a plugin to either process information or display
some data in the bug notes section, interleaved with the individual
bug notes. It gets triggered after every bug note is displayed.

Any output here should be defining appropriate rows and columns for
the surrounding <table> elements.

Parameters
• <Integer>: Bug ID

• <Integer>: Bugnote ID

• <Boolean>: Private bugnote (false if public)

EVENT_VIEW_BUGNOTES_END (Execute)

This event allows a plugin to either process information or display
some data in the bug notes section, after all bugnotes have been dis-
played.

Any output here should be defining appropriate rows and columns for
the surrounding <table> elements.

Parameters
• <Integer>: Bug ID

5.5.4. Bugnote Actions

EVENT_BUGNOTE_ADD_FORM (Execute)

Chapter 5. Events Reference

40

This event allows plugins to do processing or display form elements
in the bugnote adding form. It is triggered immediately after the bug-
note text field.

Any output here should be defining appropriate rows and columns for
the surrounding <table> elements.

Parameters
• <Integer>: Bug ID

EVENT_BUGNOTE_ADD (Execute)

This event allows plugins to do post-processing of bugnotes added to
an issue.

Parameters
• <Integer>: Bug ID

• <Integer>: Bugnote ID

EVENT_BUGNOTE_EDIT_FORM (Execute)

This event allows plugins to do processing or display form elements
in the bugnote editing form. It is triggered immediately after the bug-
note text field.

Any output here should be defining appropriate rows and columns for
the surrounding <table> elements.

Parameters
• <Integer>: Bug ID

• <Integer>: Bugnote ID

EVENT_BUGNOTE_EDIT (Execute)

This event allows plugins to do post-processing of bugnote edits.

Parameters
• <Integer>: Bug ID

• <Integer>: Bugnote ID

EVENT_BUGNOTE_DELETED (Execute)

This event allows plugins to do post-processing of bugnote deletions.

Parameters
• <Integer>: Bug ID

• <Integer>: Bugnote ID

EVENT_TAG_ATTACHED (Execute)

This event allows plugins to do post-processing of attached tags.

Parameters
• <Integer>: Bug ID

• <Array of Integers>: Tag IDs

Notification Events

41

EVENT_TAG_DETACHED (Execute)

This event allows plugins to do post-processing of detached tags.

Parameters
• <Integer>: Bug ID

• <Array of Integers>: Tag IDs

5.6. Notification Events

5.6.1. Recipient Selection

EVENT_NOTIFY_USER_INCLUDE (Default)

This event allows a plugin to specify a set of users to be included as
recipients for a notification. The set of users returned is added to the
list of recipients already generated from the existing notification flags
and selection process.

Parameters
• <Integer>: Bug ID

• <String>: Notification type

Return Value
• <Array>: User IDs to include as recipients

EVENT_NOTIFY_USER_EXCLUDE (Default)

This event allows a plugin to selectively exclude individual users from
the recipient list for a notification. The event is signalled for every
user in the final recipient list, including recipients added by the event
NOTIFY_USER_INCLUDE as described above.

Parameters
• <Integer>: Bug ID

• <String>: Notification type

• <Integer>: User ID

Return Value
• <Boolean>: True to exclude the user, false otherwise

5.7. User Account Events

5.7.1. Account Preferences

EVENT_ACCOUNT_PREF_UPDATE_FORM (Execute)

This event allows plugins to do processing or display form elements
on the Account Preferences page. It is triggered immediately after the
last core preference element.

Chapter 5. Events Reference

42

Any output here should follow the format found in
account_prefs_inc.php. As of 1.3.x this is no longer table elements.

Parameters
• <Integer>: User ID

EVENT_ACCOUNT_PREF_UPDATE (Execute)

This event allows plugins to do pre-processing of form elements from
the Account Preferences page. It is triggered immediately before the
user preferences are saved to the database.

Parameters
• <Integer>: User ID

EVENT_USER_AVATAR (First)

This event gets the user's avatar as an instance of the Avatar class.
The first plugin to respond with an avatar wins. Hence, in case of mul-
tiple avatar plugins, make sure to tweak the priorities. Avatars should
return null if they don't have an avatar for the specified user id.

Parameters
• <Avatar>: Avatar instance or null.

5.8. Management Events

EVENT_MANAGE_OVERVIEW_INFO (Output)

This event allows plugins to display special information on the Man-
agement Overview page.

Any output here should be defining appropriate rows and columns for
the surrounding <table> elements.

Parameters
• <Boolean>: whether user is administrator

5.8.1. Projects and Versions

EVENT_MANAGE_PROJECT_PAGE (Execute)

This event allows plugins to do processing or display information on
the View Project page. It is triggered immediately before the project
access blocks.

Any output here should be contained within its own <table> element.

Parameters
• <Integer>: Project ID

EVENT_MANAGE_PROJECT_CREATE_FORM (Execute)

This event allows plugins to do processing or display form elements
on the Create Project page. It is triggered immediately before the sub-
mit button.

Projects and Versions

43

Any output here should follow the format found in
manage_proj_create_page.php. As of 1.3.x this is no longer table ele-
ments.

EVENT_MANAGE_PROJECT_CREATE (Execute)

This event allows plugins to do post-processing of newly-created
projects and form elements from the Create Project page.

Parameters
• <Integer>: Project ID

EVENT_MANAGE_PROJECT_UPDATE_FORM (Execute)

This event allows plugins to do processing or display form elements
in the Edit Project form on the View Project page. It is triggered imme-
diately before the submit button.

Any output here should follow the format found in
manage_proj_edit_page.php. As of 1.3.x this is no longer table ele-
ments.

Parameters
• <Integer>: Project ID

EVENT_MANAGE_PROJECT_UPDATE (Execute)

This event allows plugins to do post-processing of modified projects
and form elements from the Edit Project form.

Parameters
• <Integer>: Project ID

EVENT_MANAGE_PROJECT_DELETE (Execute)

This event allows plugins to do pre-processing of project deletion.
This event is triggered prior to the project removal from the database.

Parameters
• <Integer>: Project ID

EVENT_MANAGE_VERSION_CREATE (Execute)

This event allows plugins to do post-processing of newly-created
project versions from the View Project page, or versions copied from
other projects. This event is triggered for each version created.

Parameters
• <Integer>: Version ID

EVENT_MANAGE_VERSION_UPDATE_FORM (Execute)

This event allows plugins to do processing or display form elements
on the Update Version page. It is triggered immediately before the
submit button.

Any output here should follow the format found in
manage_proj_ver_edit_page.php. As of 1.3.x this is no longer table
elements.

Chapter 5. Events Reference

44

Parameters
• <Integer>: Version ID

EVENT_MANAGE_VERSION_UPDATE (Execute)

This event allows plugins to do post-processing of modified versions
and form elements from the Edit Version page.

Parameters
• <Integer>: Version ID

EVENT_MANAGE_VERSION_DELETE (Execute)

This event allows plugins to do pre-processing of version deletion.
This event is triggered prior to the version removal from the database.

Parameters
• <Integer>: Version ID

• <String>: Replacement version to set on issues that are currently
using the version that is about to be deleted.

EVENT_MANAGE_USER_CREATE_FORM (Execute)

This event allows plugins to do processing or display form elements
on the Create User page. It is triggered immediately before the submit
button.

Any output here should follow the format found in
manage_user_create_page.php.

EVENT_MANAGE_USER_CREATE (Execute)

This event allows plugins to do post-processing of newly-created
users. This event is triggered for each user created. The Manage
Users create form is one possible case for triggering such events, but
there can be other ways users can be created.

Parameters
• <Integer>: User ID

EVENT_MANAGE_USER_UPDATE_FORM (Execute)

This event allows plugins to do processing or display form elements
in the Manage User page. It is triggered immediately before the sub-
mit button.

Any output here should follow the format found in
manage_user_edit_page.php.

Parameters
• <Integer>: User ID

EVENT_MANAGE_USER_UPDATE (Execute)

This event allows plugins to do post-processing of modified users.
This may be triggered by the Manage User page or some other path.

Projects and Versions

45

Parameters
• <Integer>: User ID

EVENT_MANAGE_USER_DELETE (Execute)

This event allows plugins to do pre-processing of user deletion.

Parameters
• <Integer>: User ID

EVENT_MANAGE_USER_PAGE (Execute)

This event allows plugins to do processing or display information on
the View User page. It is triggered immediately after the reset pass-
word segment.

Any output here should be contained within its own container.

Parameters
• <Integer>: User ID

46

Chapter 6.

47

Integrating with MantisBT
The primary means of integrating with MantisBT with web services is with the bundled SOAP API,
which is accessible at http://server.com/mantis/api/soap/mantisconnect.php.

6.1. Java integration

6.1.1. Prebuilt SOAP stubs using Axis
For ease of integration of the Java clients, SOAP stubs are maintained and deployed in the Maven
central repository1. For example:

<dependency>
 <groupId>biz.futureware.mantis</groupId>
 <artifactId>mantis-axis-soap-client</artifactId>
 <version>1.2.15</version>
</dependency>

To include them in your project, download the latest available version2.

6.1.2. Usage in OSGi environments
If you would like to use Axis in an OSGi environment, it is recommended that you use a ready-made
bundle, such as the Axis bundle available from Eclipse Orbit3

6.2. Compatibility between releases
The SOAP API signature will change between minor releases, typically to add new functionality or to
extend existing features.

Some of these changes might require a refresh of the client libraries generated, for instance Apache
Axis 1 SOAP stubs must be regenerated if a complex type receives a new property. Such changes will
be announced before the release of the new MantisBT version on the mantisbt-soap-dev mailing list4.
Typically there will be two weeks time to integrate the new SOAP stubs.

6.3. Support
The primary means of obtaining support for Web Services and the SOAP API is through the mantis-
bt-soap-dev mailing list5.

1 http://maven.org/
2 http://search.maven.org/#search|ga|1|g%3A%22biz.futureware.mantis%22
3 http://download.eclipse.org/tools/orbit/downloads/
4 http://lists.sourceforge.net/mailman/listinfo/mantisbt-soap-dev
5 http://lists.sourceforge.net/mailman/listinfo/mantisbt-soap-dev

http://maven.org/
http://maven.org/
http://search.maven.org/#search|ga|1|g%3A%22biz.futureware.mantis%22
http://download.eclipse.org/tools/orbit/downloads/
http://lists.sourceforge.net/mailman/listinfo/mantisbt-soap-dev
http://lists.sourceforge.net/mailman/listinfo/mantisbt-soap-dev
http://lists.sourceforge.net/mailman/listinfo/mantisbt-soap-dev
http://maven.org/
http://search.maven.org/#search|ga|1|g%3A%22biz.futureware.mantis%22
http://download.eclipse.org/tools/orbit/downloads/
http://lists.sourceforge.net/mailman/listinfo/mantisbt-soap-dev
http://lists.sourceforge.net/mailman/listinfo/mantisbt-soap-dev

48

Chapter 7.

49

Appendix

7.1. Git References
• The Git SCM web site1 offers a full reference of Git commands, as well Scott Chacon's excellent Pro

Git book.

• Github's Git Reference2

• Official documentation (from kernel.org)

• Manual Page3

• Tutorial4

• Everyday Git With 20 Commands5

• Git Crash Course for SVN Users6

• Git From the Bottom Up7 (PDF)

1 http://git-scm.com/documentation/
2 http://gitref.org/
3 http://www.kernel.org/pub/software/scm/git/docs/
4 http://www.kernel.org/pub/software/scm/git/docs/gittutorial.html
5 http://www.kernel.org/pub/software/scm/git/docs/everyday.html
6 https://git.wiki.kernel.org/index.php/GitSvnCrashCourse
7 http://ftp.newartisans.com/pub/git.from.bottom.up.pdf

http://git-scm.com/documentation/
http://gitref.org/
http://www.kernel.org/pub/software/scm/git/docs/
http://www.kernel.org/pub/software/scm/git/docs/gittutorial.html
http://www.kernel.org/pub/software/scm/git/docs/everyday.html
https://git.wiki.kernel.org/index.php/GitSvnCrashCourse
http://ftp.newartisans.com/pub/git.from.bottom.up.pdf
http://git-scm.com/documentation/
http://gitref.org/
http://www.kernel.org/pub/software/scm/git/docs/
http://www.kernel.org/pub/software/scm/git/docs/gittutorial.html
http://www.kernel.org/pub/software/scm/git/docs/everyday.html
https://git.wiki.kernel.org/index.php/GitSvnCrashCourse
http://ftp.newartisans.com/pub/git.from.bottom.up.pdf

50

51

Appendix A. Revision History
Revision 2.0-2 Fri Dec 30 2016 Victor Boctor vboctor@mantisbt.org

Release 2.0.0

Revision 2.0-1 Sat Nov 26 2016 Damien Regad dregad@mantisbt.org

Release 2.0.0-rc.2

mailto:vboctor@mantisbt.org
mailto:dregad@mantisbt.org

52

	Developers Guide
	Table of Contents
	Chapter 1. Contributing to MantisBT
	1.1. Initial Setup
	1.2. Cloning the Repository
	1.2.1. Determining the Clone URL
	1.2.2. Initializing the Clone
	1.2.3. Adding remotes
	1.2.4. Checking out branches

	1.3. Maintaining Tracking Branches
	1.4. Preparing Feature Branches
	1.4.1. Private Branches
	1.4.2. Public Branches

	1.5. Running PHPUnit tests
	1.5.1. Running the SOAP tests

	1.6. Submitting Changes
	1.6.1. Before you submit
	1.6.2. Submission Via Github Pull Requests
	1.6.3. Submission Via Formatted Patches
	1.6.4. Submission Via Public Repository

	Chapter 2. Database Schema Management
	2.1. The MantisBT schema
	2.2. Schema Definition
	2.3. Installation / Upgrade Process

	Chapter 3. Event System
	3.1. General Concepts
	3.2. API Usage
	3.3. Event Types

	Chapter 4. Plugin System
	4.1. General Concepts
	4.2. Building a Plugin
	4.2.1. Plugin Structure
	4.2.2. Properties
	4.2.3. Pages and Files
	4.2.4. Events
	4.2.5. Configuration
	4.2.6. Language and Localization

	4.3. Example Plugin Source Listing
	4.3.1. Example/Example.php
	4.3.2. Example/files/foo.css
	4.3.3. Example/lang/strings_english.txt
	4.3.4. Example/page/config_page.php
	4.3.5. Example/pages/config_update.php
	4.3.6. Example/page/foo.php

	4.4. API Usage

	Chapter 5. Events Reference
	5.1. Introduction
	5.2. System Events
	5.3. Output Modifier Events
	5.3.1. String Display
	5.3.2. Menu Items
	5.3.3. Page Layout

	5.4. Bug Filter Events
	5.4.1. Custom Filters and Columns

	5.5. Bug and Bugnote Events
	5.5.1. Bug View
	5.5.2. Bug Actions
	5.5.3. Bugnote View
	5.5.4. Bugnote Actions

	5.6. Notification Events
	5.6.1. Recipient Selection

	5.7. User Account Events
	5.7.1. Account Preferences

	5.8. Management Events
	5.8.1. Projects and Versions

	Chapter 6. Integrating with MantisBT
	6.1. Java integration
	6.1.1. Prebuilt SOAP stubs using Axis
	6.1.2. Usage in OSGi environments

	6.2. Compatibility between releases
	6.3. Support

	Chapter 7. Appendix
	7.1. Git References

	Appendix A. Revision History

